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e 1999-2012: Data-Intensive Applications
e Applications; Characteristics, Commonalities; Middleware
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e Hardware; Software
e Dataflow Application Model and Runtime System

e Runtime System Optimizations for
 Dynamic Workloads; Finitely Divisible Loads
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Where | am coming from: @H Medical

Center

Applications associated with Large Datasets

Processing Remotely-Sensed Data

Managing Oilfields,
Contaminant Transport Seismic Imaging Visualization -Virtual Human

gADSe?:A2012 Catalyiirek "Challenges and Lessons Learned in Data-Intensive Computing" _




Wexner
Medical

@\
Characteristics, Commonalities... IR | Yo

e Spatio-temporal datasets (generally low dimensional) — datasets
describe physical scenarios

e Multi-dimensional, Multi-resolution, Multi-scale

* Very large file-based datasets
e Hundreds of gigabytes to 100+ TB data
e Data is stored in a distributed collection of files
* Lots of datasets, lots of files

* Data products often involve results from ensemble of spatio-
temporal datasets

e Some applications require interactive exploration of datasets

e Common operations: subsetting, filtering, interpolations,
projections, comparisons, frequency counts

* Modeling and management of data analysis workflows
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e Distributed data processing support

* Grid based data virtualization, data management, query,
on demand data product generation

e Distributed metadata and data management

 Track metadata associated with data and data analysis
workflows
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Data Analysis on Clusters: Active Data Repository (ADR)

e Targets storage, retrieval and manipulation of multi-dimensional datasets on parallel
machines

* Several services are customizable for various application specific processing
e Data retrieval, memory management, and scheduling of processing
» Data declustering/clustering, Indexing
e Active Semantic Data Cache: Active Proxy G
* Employ user semantics to cache and retrieve data
e Store and reuse results of computations
* Application of Grid Technology in Cancer Research: caGrid
* Driven by cancer research community requirements
* Services-Oriented, Metadata driven
e Creation and management of a strongly-typed, multi-institutional, research grid
* Leverages existing technology: e.g. caDSR, EVS, Mobius GME, Globus
e Distributed Metadata and Data Management: Mobius
e Create, manage, version data definitions

e Management of metadata and data instances
e Dataintegration
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e Data Virtualization: STORM
* Large data querying capabilities, layered on DataCutter
e Distributed data virtualization
* Indexing, Data Cluster/Decluster, Parallel Data Transfer

SELECT <DataElements>
FROM Dataset-1, Dataset-2,..., Dataset-n
WHERE <Expression> AND <MyFilterFunc(<DataElement>)>
GROUP-BY-PROCESSOR ComputeAttribute(<DataElement>)

* Data Analysis/Processing Workflows: DataCutter/DataCutter-Lite and Anthill
e Component Framework for Combined Task/Data Parallelism
e Filtering/Program coupling Service: Distributed C++/Java/Python component framework
* On demand data product generation
* more later..
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Current & Future Systems

e More and more machines composed of multi-core and many-core
CPUs, and accelerators

e Top500’s top 5 has 3, Green500’s top 10 has 6 supercomputer with
GPUs (5 Nvidia, 1 ATI) | ESESESESESESESES

e Some examples:
* Intel MIC Knights Corner
* 50+ x86 cores, 4-way SMT per core
e 512-byte SIMD registers
* NVIDIA Fermi GPU
* Upto 512 cores
e Up to 600 GFLOPS of double-precision
e |IBM POWER7?7
* Upto 8 cores, 4-way SMT per core
* 32 MB on-die L3 eDRAM cache
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Software Motivation: Ve
‘P \ | Center

How to utilize all resources effectively?

Application Tasks

Granulatity

ncreasing

.................................................
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e OSU/UMD-DataCutter, UMFG/OSU-Anthill
e Application decomposed into a task-graph (filters & streams)

e Task graph performs computation
e Individual tasks perform single function
e Tasks (filters) are independent, with well-defined interfaces

e Communication using streams

e Transparent filter instances — Single stream illusion

* Intra-task architecture-specific optimizations possible
* Architectural heterogeneity abstracted

 Runtime systems’ network interface matches high-bandwidth
networks’ communication model
e Application tasks communicate using data buffers through streams

* Asynchronous communications overlap with computation

* Robust load balancing techniques

TASSA
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* Multiple dimensions of
parallelism

e Task parallelism

Layout

e Data parallelism

* Pipeline parallelism

CPUs

\

Node O Node 1 Node 2

Placement
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* We will look at two different class of applications:

* Dynamic workloads with non-divisible databuffer sizes are
given by the application at runtime

e Applications with finitely divisible load

TASSA
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Dynamic Workloads
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Sample Appli_cation: Neuroblastoma @w Wexner
Image Analysis ~

Center

e Classify biopsy tissue images into different subtypes of prognostic
significance

e Very high resolution slides
* Divided into smaller tiles

e Multi-resolution image analysis
* Mimics the way pathologists perform their analysis

* If classification at lower resolution is not satisfactory, analysis algorithm is
executed at higher resolution(s), hence the dynamic workload.

Compute tile: tileld, resolution
L]

1
SELECT 1 Uniform LBP
REDUCE BINS
INPUT IMAGE L L LBP 1 »| HISTOGRAM : > & »| BHATTACH.
RESOLUTION D ”|  OPERATOR DISTANCE
> COLOR A : NORMALIZE
CONVERSION B 1 v
» 1
| stamisTicaL | 12 '
p| STATISTIC 1 »| cLassiFiEr |
FEATURES 1 >
1
Per-pixel operation (compute intensive) Per-tile operations (unexpensive/not parallelized)
1
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e Improving CPU/GPU data transfers
* Intra-filter task assignment

e |nter-filter optimizations
* A novel stream policy: on-demand dynamic selective stream
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e Data bus bandwidth between CPU/GPU is a critical
barrier

e Overlap the data transfer with useful computation
e GPUs allow multiple concurrent transfers (events)

 The optimal number of concurrent transfers varies:
computation/communication rate

 An automated approach to dynamically configure the
number of concurrent copies — based on the kernel

throughput

TASSA
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e The processing rates of the processors are data-
dependent

e Exploit intra-filter task heterogeneity
e Schedule appropriate tasks to appropriate processors

e DDWRR - Demand-Driven Weighted Round Robin

e Events shared among processors
e Sorts events according to their performance on each device

e Selects the event with the highest speedup (out-of-order
fashion)

TASSA
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Inter-filter optimization: On-Demand @w Wexner
Dynamic Selective stream (ODDS) &P | Center

e Stream premises

e The number of data buffers at each filter copy should be only enough to
keep its processors busy

Data buffers sent to a filter should maximize the performance of processors
allocated to each filter instance

e Dynamic Queue Adaptation Algorithm
* Executed at the receiver side

e C(Calculates the number of data buffers necessary to keep processor busy
e Ratio of request response time to data buffer processing time

e Data Buffer Selection Algorithm

 Executed at the sender side

e Sends the data buffer with the highest speedup to the requesting processor

TASSA . .
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Effect of runtime optimizations

Setup
e Homogeneous cluster - 14 nodes w/ CPU/GPU

Heterogeneous cluster — 14 nodes

e 7 use both the CPU and the GPU
e 7 nodes do not use the GPU

e Stream policies

TASSA
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Demand-driven Area of Queue Policy Size of request
scheduling policy effect Sender Receiver for data buffers
DDFCFS* Intra-filter Unsorted Unsorted Static
DDWRR Intra-filter Unsorted Sorted by speedup Static

ODDS Inter-filter | Sorted by speedup | Sorted by speedup Dynamic

*DDFCFS: Anthill’s default “Demand-driven first-come, first-served
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Effect of runtime optimizations

Homogeneous base case
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Tile recalculation rate: % of tiles
recalculated at higher resolution.

ODDS improves performance

even in the base case

Heterogeneous base case
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Strong Scalability

Homogeneous environment
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All policies scale near to linear in
homogeneous environments

Heterogeneous environment
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Adaptive Dataflow Middleware
for
Finitely Divisible Load
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Adaptive Dataflow Middleware for gy vedca
Heterogeneous Systems o
 Many real-world applications follow simple model

* Independent tasks

e Multi-dimensional (rectangular, cuboid etc.) work area
e Finitely divisible (tiles)

e Arbitrary partitions, within minimum and maximum
constraints

 Even modern distributed middleware requires
developers to perform manual tuning

e Minimum execution time dependent on:

e System configuration (# nodes, # CPUs / node, # GPUs /
node, CPU speed, GPU speed, network speed)

e Application specifics

TASSA
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A Simplified Application Model for @w Ethl
Finitely Divisible Load Applications

e A component-based
dataflow application

® N Processors

Node 0 * One copy of each filter
pipeline on each processor

Node 1 e No communication
between filters inside
pipeline

Node n * Processors can be

heterogeneous

TASSA
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* Two concerns:
e Choosing the best data buffer (work tile) size

e Accelerators' performance highly dependent on amount of
work per data buffer

e Directly related to the application work area

e Allow runtime system to automatically partition the work
area into tiles

e Keep track of processors' performance with performance
model for each processor

e Balancing the load

e Use work-stealing to give processors appropriate work, such
that all processors finish simultaneously

TASSA
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* Four parts
e Performance Model
* Tracks execution time performance for each data buffer size
e Dynamically finds the highest-performing data buffer size
 Work Partitioner
* Dynamically partitions and schedules data buffers
e Distributed Work-Stealing Layer

* Lightweight work-stealing technique to balance the load
across the nodes

e Storage Layer
* Enables efficient network use and separation of stealing of
work and movement of data

TASSA
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e Three phases
* Bootstrap

* |nitialize performance model by trying some data buffer
sizes

e Steady-state
e Partition work area using maximum processing rates
e Send work tiles which have the maximum processing rate
e Keep processor queues full to hide latencies
e Steal work from remote peer if none available locally
* Flushout
 If total work area is low, reduce tile sizes, for load balance

TASSA . .
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APC+: Work-stealing IR |t
1 e Storage Layer (SL), Processing

Filter (P)
e Successful steal (1,2)

schedules one data buffer for

transfer (3)

 Upon receipt of the data
buffer in the storage layer (4),
the data buffer is unlocked (5),
and scheduled for processing
(6)

* Acknowledgement of receipt

(7,8) schedules next data
buffer

TASSA
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 Real-World Applications
e Synthetic Aperture Radar Image Analysis
e Histopathology Image Analysis
e Black-Scholes European Stock Option Pricing Calculation

e Conduct weak scalability experiments
* Increase work commensurate with increased computational resources

e Owens cluster

e 32 nodes, dual quad-core Intel Xeon CPUs, single Nvidia C2050
GPU

e 20Gbps Infiniband connected

TASSA . .
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* DataCutter
e Demand-Driven load balancing (DC-DD)
 Requires manual tuning

e Simple, fast

e KAAPI/Athapascan-1
* Work-stealing load balancing; scheduling with dependencies
e Requires manual tuning
* Theoretically asymptotic optimal behavior, in certain conditions
e KAAPI has no native IB protocol

* MR-MPI
e Simple MapReduce programming semantic
e Requires manual tuning
* Small API, no parallel programming knowledge is required

TASSA
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e KAAPI perf. due to network bottleneck (16 thr./node)
e MR- MPI slow down due to synchronization
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Histopathology Image Analysis: CPU+GPU V&t cener
300
250 I
& 200
%’ I
£ TCP
§ 150 ® BOOT
§ I B OVER
& 100 o LIMEB
I I B PROC

(O
o

' : I IH""
0_

1124/ 8/1632/1/2 4 816321 2 4 81632 1|2 4 8/|16/32

DC-APC+ ‘ DC-DD ‘ KAAPI ‘ MR-MPI ‘

 Endpoint contention on node O: cannot feed whole
cluster sufficiently, especially using TCPolIB
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Black-Scholes: CPU+GPU Pt
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e Data-intensive reduction to one node; KAAPI cannot pin
distributed data read tasks; MR-MPI: no comm. overlap

EADSe?:A2012 bml TR e /pc Catalyiirek "Challenges and Lessons Learned in Data-Intensive Computing" -



Wexner
Medical

(A
0
Summary PR | Yo

* Dataflow systems are easy to program and good for efficiently
using heterogeneous systems

* Dynamic runtime system optimizations were useful to utilize all
computing resources
 Don't neglect CPU cores even if you have powerful accelerators

e Adequate use of CPU/GPU doubled GPU-only performance in several
scenarios

e APC+ does a good job of application tuning and load balancing

* Meets or beats well-tuned demand-driven policy

 There is always future work
e Expand application and work area models for APC+
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* Traditional low emphasis on performance — major end to end
performance issues

* For real high-performing data-intensive applications
e Dynamic resource management
Data-centric computing
* Treat data as first-class citizen

 Move work to data when needed
Global dependency graph (DAGs?) exposed to runtime system
Smart work-queues (distributed work-stealing)

e Separate work-stealing and data transfer
Asynchronous execution (pipelined execution)

* Not surprising, not “much” different than others’
recommendations for future roadmap to Exascale

TASSA
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e Large scale data is a great buzz word but great need to
systematically nail down user requirements now that we
have plausible data systems with fast Hard disks and

SSDs

 End to end performance characterization is rare and
valuable. Traditionally hindered by shared nature of

storage systems

III

e Claim: “l can do all in MPI+X+Y in my application

e Sure you can! How do you think we implemented the runtime
system!
e But do you want to re-do in all of your applications?

TASSA
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e For more information
e Email umit@bmi.osu.edu
e Visit http://bmi.osu.edu/~umit or http://bmi.osu.edu/hpc
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